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Ge, Rusjan, and Zweifel introduced a binary tree which represents all the periodic 
windows in the chaotic regime of iterated one-dimensional unimodal maps. 
We consider the scaling behavior in a modified tree which takes into account 
the self-similarity of the window structure. A nonuniversal geometric con- 
vergence of the associated superstable parameter values towards a Misiurewicz 
point is observed for almost all binary sequences with periodic tails. For these 
sequences the window period grows arithmetically down the binary tree. There 
are an infinite number of exceptional sequences, however, for which the growth 
of the window period is faster. Numerical studies with a quadratic maximum 
suggest more rapid than geometric scaling of the superstable parameter values 
for such sequences. 

KEY WORDS: Unimodal map; scaling; binary tree; periodic window; chaos; 
Misiurewicz point. 

1. I N T R O D U C T I O N  

I tera ted  o n e - d i m e n s i o n a l  u n i m o d a l  mapsl~l  have been the subject  of  hun -  
dreds of papers  over  the last couple  of decades. No t  on ly  are they a m o n g  
the s implest  dynam i c a l  systems exhibi t ing  chaot ic  behavior ,  bu t  they are 
also very i m p o r t a n t  as p ro to types  of dissipat ive systems. In  spite of 
b r e a k t h r o u g h s  such as symbol ic  dynamics ,  I~ 3~ ergodic  behavior ,  tt'4'61"3 and  

the t r ans i t ion  to chaos  tTI in the theory of u n i m o d a l  maps,  m a n y  p rob lems  
remain  related to the scal ing behav io r  of such maps  wi th in  the so-called 
chaot ic  regime. This  region is defined as the p a r am e te r  in terval  be tween the 

Research Institute for Theoretical Physics, P.O. Box 9, FIN-00014 University of Helsinki, 
Finland. 

2 lnstitutionen f6r fysik, .~bo Akademi, Porthansgatan 3, FIN-20500 ,~bo, Finland. 
3 See ref. 5 for the most recent developments. 

643 

0022-4715/94/0500-0643507.00/0 E 1994 Plenum Publishing Corporation 



644 Ketoja and Kurkijiirvi 

first period-doubling accumulation point and the final crisis point beyond 
which no periodic or chaotic attractors can be found within the 
unimodality interval of the phase space. 

Rigorous mathematical proofs (6~ establish that the parameter values 
corresponding to an absolutely continuous invariant ergodic measure form 
a set with a positive Lebesgue measure. These "chaotic" parameter values 
are found in between the infinite number of windows with stable periodic 
attractors. The "periodic" windows are expected to be dense on the 
parameter axis. Although each window has a finite length, there remains a 
great deal of space for chaotic parameter values: Near the accumulation 
point of a period-doubling cascade, the relative fraction of the aperiodic 
solutions is given by the universal number 0.892 .... c8) Even considering the 
whole chaotic region, the probability of finding an aperiodic solution is 
approximately 9/10 for a typical map. 191 

Since periodic windows are ubiquitous along the parameter axis, 
various infinite sequences of them are a natural tool when investigating 
scaling properties of unimodal maps. The scaling behaviors of period- 
doubling ~7) and more general multifurcation sequences, I]~ period-adding 
sequences approaching a crisis, ~]~'~21 and tangent bifurcation points It3~ 
have been determined. Shibayama 114) extended the analysis to the so-called 
Fibonacci sequences whose scaling is superexponential both on the 
parameter axis and in the phase space. An exact universal form of that type 
of scaling was found by Ketoja and Piiril~i ~5~ using a renormalization argu- 
ment. Later Lyubich and Milnor t~6~ derived rigorous results both for the 
scaling behavior and the dynamics at the accumulation points of such 
sequences. 

In this paper we report scaling results related to a binary tree of 
periodic windows introduced by Ge et al. (GRZ). I]71 Originally the tree 
was defined so that each window included the period-doubling tail in addi- 
tion to the stable parameter interval of a periodic solution. In our modified 
tree, each window is extended up to the corresponding interior crisis point. 
We "sum" not only over the period-doubling tail, but over all the multi- 
furcation sequences. In this way the self-similarity of the periodic-window 
structure ~]8~ can be naturally taken into account. The structure within 
each window is essentially a small copy of the entire structure along the 
parameter axis. We concentrate on those periodic-window sequences whose 
binary codes have periodic tails. Such sequences usually lead to arithmetic 
growth of the period and to nonuniversal geometric scaling. The windows 
accumulate at a Misiurewicz point, t 1,4~ at which the dynamics is completely 
chaotic. The previously studied Fibonacci sequences form an exception 
with geometric growth of the period down the binary tree. We devise a 
method of generating an infinite number of other exceptional cases in 
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which the period increases in a nonarithmetic way. Preliminary numerical 
studies suggest that the scaling in these cases is faster than geometric 
provided the critical point of the map is quadratic. 

The rest of the paper is organized as follows. In Section 2 we discuss 
the window structure and the Metropolis et  al. (MSS) rule t2~ and explain 
our binary tree which keeps track of only the essential basic windows 
without copies induced by the self-similar structure. In Section 3 a new rule, 
different from MSS, is introduced for passing from a binary code to the 
MSS sequence. It is demonstrated in Section 4 that the new rule allows one 
to understand how a small fraction of the binary codes with periodic tails 
can lead to MSS sequences with geometrically growing lengths. Section 5 
reports on the scaling of the positions and the widths of the windows 
belonging to typical, exceptional, or aperiodic binary codes. Section 6 
generalizes a relationship of Post and Capel t~2~ between the scalings of the 
positions and the widths of the windows. We show that their result applies 
to all families corresponding to typical binary codes with periodic tails. 
There is a concluding discussion section, Section 7. An appendix contains 
the formal proof that the accumulation points of windows corresponding to 
typical binary codes with periodic tails are Misiurewicz points. 

2. B I N A R Y  TREE 

Consider a one-parameter family f , ( x )  of differentiable unimodal 
maps from a real interval I to itself, f~, is assumed to have a quadratic 
maximum at x = c so that the map is monotonically increasing for x � 9  
x < c, and monotonically decreasing on the other side of the critical point c. 
An orbit obtained by iterating f ,  starting from c can be symbolically repre- 
sented in terms of the kneading sequence a l a _  . . . .  , where a i =  R l f f ~ ( c ) > c "  

and a~ = L if f i , ( c ) <  c. The case in which the orbit returns back to the criti- 
cal point after i iterations, f i , ( c ) =  c, is indicated by cutting the kneading 
sequence after i - 1  symbols so that the sequence becomes finite. Finite 
symbol sequences therefore correspond to superstable periodic orbits. We 
are interested in the admissible kneading sequences at some parameter 
values of the unimodal map. Metropolis et aL (MSS) t21 discovered a simple 
rule by which all admissible symbol sequences, the so-called MSS sequen- 
ces, can be generated and arranged on the parameter axis. Originally the 
rule was developed with one-parameter families of one-dimensional maps 
in mind, the type where the parameter appears as a multiplicative factor in 
the definition of the map. It holds, nevertheless, in a much larger class of 
unimodal maps, e.g., the logistic map f , ( x )  = p - x-'. 

It is instructive to take a look at the origin of the rule. To this end, 
consider two parameter values pl and /~2 (/~J </a2) which correspond to 
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the infinite MSS sequences A and B. As in ref. 17, the beginning shared by 
the sequences is denoted by A ^ B. In other words, /11 corresponds to the 
symbolic orbit (A A B)a,,.. .  and /12 to the orbit (A ^ B)b,,. . . ,  where the 
symbols a,, and b,, differ. The parameter dependence is assumed such that 
the MSS sequences in the interval (/11,/1z) always begin with A ^ B. By 
continuity there has to be a parameter value /13e (/1,,/12) with the finite 
symbol sequence C =  A ^ B. The corresponding orbit is superstable with 
the period n. Within the interval (/11,/12), there are no other orbits with 
periods ~<n. Above/13, but within the window for the stable period n, the 
MSS sequence has the form h ( C ) =  Cb,,Cb,,Cb,,... (the nth symbol has to 
be b,,  otherwise there would be at least two parameter values with the 
MSS sequence C). From h(C) and B a new periodic window in between/13 
and/1,  can be constructed. On the other hand, the MSS sequence has the 
form a(C) = Ca,, Ca,, Ca,,... within the period-n window below/13- Now the 
infinite sequences A and a(C) can be chosen to construct a periodic 
window in between/11 and/13- In this way a recursive procedure of generat- 
ing new periodic windows is obtained. In order to generate MSS sequences 
for aperiodic orbits one would have to repeat the procedure an infinite 
number of times. 

One needs two MSS sequences in order to get the procedure going. 
For a so-called full one-parameter family of unimodal maps, Ill such as the 
logistic map, one can set out with the symbol sequences for the superstable 
period-two cycle (R) and the final crisis point (RLLL. . . ) .  In the latter, c is 
mapped onto an unstable fixed point after two iterations. The beginning 
shared by h(R)  = R L R L R L . . .  and R L L L . . .  is RL, the MSS sequence for the 
first new periodic window. The next "level" becomes h(R) ^ a ( R L ) =  R L R  
and h( R L  ) A R L L L  . . . .  RLL.  However, as h( R ) = a( R L R  ), no new windows 
in between R and R L R  can be constructed. R and R L R  describe two con- 
secutive windows within the same period-doubling sequence. According to 
this example it is impossible to generate an infinite binary tree of periodic 
windows using the original MSS rule. It will be shown below how to get 
around this problem. 

The infinite sequences h(C) and a(C) above are called the harmonic 
and antiharmonic extensions of C. These extensions can be expressed 
without knowing the infinite "parent" sequences A and B. Let us first write 
the extensions in the form 

h( C) = CetC~Cct... 

a(C) = C~tCs 

where c~ denotes the "conjugate" of the symbol ct; i.e., /~ = L and /S, = R. In 
the sequel we will refer to ct or ~ as binding elements of an extension. 
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Around the critical point c, there is a small box in which the nth iterate of 
the unimodal map looks very similar to the first iterate. The nth iterate has 
either a maximum or a minimum at c. At the superstable parameter value 
with the MSS sequence C, the extremum touches the critical point. As 
the value of the parameter is increased ~vithin the stability interval, the 
extremum passes either above or below the critical point, depending on 
whether the extremum is a maximum or a minimum. If C contains an even 
number of R's (Ceven),  the nth iterate has a maximum at c; otherwise 
(Codd)  the extremum is a minimumJ ~2~ In other words, 0 t=R in the 
former and a = L in the latter case. 

The fact that the n th iterate restricted to a small box around the 
critical point becomes a unimodal map is responsible for the self-similarity 
of the MSS structure. One expects the same MSS periodic windows with the 
nth iterate as with the original map. Only the structure in the higher iterate 
is observed in a much smaller parameter interval than for the original map. 
The window with the "reduced" MSS sequence a~ ...a~., which includes only 
every nth iterate (these actually land inside the small box), corresponds to 
the full MSS sequence ~jS~ 

~CajCa2...CakC if C is even 
C*(al""ak)=~C~lCfi .... CdkC if Cis  odd 

for the original map. By this composition law it is easy to write down the 
MSS sequence at the endpoint of the parameter interval which contains the 
self-similar copy of the whole periodic window structure: C .  (RLLL...)= 
C~CSC~2 . . . .  C~a(C). This endpoint corresponds to an internal crisis where 
the orbit of the critical point lands on an unstable period n after 2n iterations. 
We call C~a(C) the crisis extension and denote it by e(C). 

The superstable period-two cycle with the MSS code R, preceded by 
a stable fixed point on the parameter axis, belongs to the primary period- 
doubling cascade which ends at the transition to chaos. By self-similarity, 
every periodic window is followed up by a similar cascade. GRZ 117t modify 
the definition of a periodic window, including in it the corresponding 
period-doubling tail. In the recursive construction of the periodic windows 
one considers, instead of h(C), the MSS code at the period-doubling 
accumulation point, h(h(h(.., h(C)... ))), where the "cut" harmonic extension 
h(C) = C~C is successively applied an infinite number of times. In this way, 
one never generates windows within a period-doubling cascade and two 
neighboring infinite sequences never become equal. Therefore, it is possible 
to generate an infinite binary tree of periodic windows. GRZ want to apply 
Feigenbaum's 1~9~ general ideas on the renormalization of binary trees to 
this particular case. We take a different point of view and exploit the binary 
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tree as a tool of studying the overall scaling behavior within the chaotic 
region. 

We modify the GRZ tree with the crisis extension so as to take full 
advantage of the self-similarity of the window structure. Each stability 
interval is followed up by a self-similar copy of the whole periodic window 
structure. Because the scaling of these small "subwindows" is expected to 
be qualitatively equivalent to the scaling of the main structure, we omit 
them by extending each window up to the corresponding interior crisis 
point. Furthermore, by self-similarity the scaling within the 2P-band 
regions (p---1, 2,...) c~ is expected to be similar to the one observed within 
the region of one chaotic band. We consider only the latter region and 
construct an infinite binary tree of periodic windows making use of the 
antiharmonic and crisis extensions in the following way: 

1. Begin with the infinite "left parent" e(R) and the infinite "right 
parent" RLLL .... The crisis extension e (R)=RLRRR. . ,  corresponds to 
the last band merging point (where a critical point is mapped onto an 
unstable fixed point after three iterations) and the sequence RLLL.. .  to the 
final crisis point. All the windows of the tree lie in between these two points 
(i.e., in the region of one chaotic bandl~). 

2. From two infinite "parent" sequences A and B form a finite 
"daughter" sequence C by taking the shared beginning of A and B. The 
first such sequence RL is the "root" of the tree. 

3. Take A and a(C) as the infinite parents of a new left "branch" and 
e(C) and B as the infinite parents of a new right "branch." Attach the 
symbol 0 to the left and the symbol 1 to the right branch. 

The beginning of the infinite binary tree is shown in Fig. 1. There is a 
one-to-one correspondence between the binary codes consisting of the 
symbols 0 and 1 and the MSS sequences. In the following, we use the 
symbol --* to express this correspondence. For example, 102~ RL'-RLR. 
ct k means that the symbol (or a block of symbols) ct is repeated k times. 
This convention is used for both the MSS sequences and the binary codes. 

RL 

RLR 2 RL 2 

RLR 4 RLR 2 LR RL 2 R RL 3 

RLR 6 RLR4LR RLR2LRLR RLR 2LR2 RL 2RLR RL 2R2 RL3R RL 4 

Fig. I. The beginning of the infinite binary tree of periodic windows. 



Scaling in Unimodal Maps 649 

3. T R A N S F O R M A T I O N  BETWEEN THE BINARY CODE AND 
THE MSS SEQUENCE 

In this section we develop "self-contained" recursive rules by which the 
transformation ~ can be carried out. These rules are just another variant 
of the MSS rule, but they turn out to be the key to understanding how 
the length of the MSS sequence increases down the binary tree. In the 
following, the ith symbol of the MSS sequence A is denoted by {A }i and 
the string from the ith symbol up to the j th  symbol by {A }{ ( j <  i implies 
an empty string). This notation is particularly useful if A is an extension or 
some other composition. 

Assume that an infinite binary code i~i2.., corresponds to the MSS 
sequence A. Let A~ be the truncation of A so that i] i2...ik ~ Ak. One of the 
"parent" branches of Ak+~ is always Ak. The more distant parent of Ak+~ 
is denoted by Ak+~ (and that of Ak isAk). For example, the parent 
branches of A 3 ---- R L 2 R L R  are A_, = RL2R and A3 = RL. "4k can be defined 
also for the case in which Ak lies at the edge of the binary tree (see below). 
The infinite parents of Ak+j are either a(Ak) and e(-'ik§ or e(Ak) and 
a(Ak+ t). It is then clear that A,+j  can be written either in the form 

o r  

Ak +, = , ' i k  ' §  

where /Yk and Yk+ ~ are the first binding elements of the proper extension. 
/~k, hk, and m~. are needed in the construction of the MSS sequence and 
can be determined by the following rules: 

Rule 1. (a) I f i k + , = i k ,  t h e n f l k = { a ( A k ) } ~ + , , , k a n d h k i s t h e l e n g t h  
of the sequence 

a(Ak) ^ {a(Ak)}2+,,,k 

(b) mk+ l =mk-khk-b 1 and Ak+l ='4k" 

ProoL With ik+~=ik the same parent branch is approached as on 
the previous step, so that A k §  The immediate infinite parent of the 
new daughter branch Ak+~ has the form Ak~ka(Ak),  and the more distant 
infinite parent has-the form Akyka(Ak).  Ak+~ is their shared beginning. It 
can be longer than A k = A k ~' k { a( A k ) } 7 'k only if fl k = { a( A k ) } , + ,,,~ . In other 
words, 

oC Ak+, =Akf lk[a(Ak)  A {a(Ak)}z+,,k] 



650 Ketoja and Kurkijiirvi 

Rule 1 (b) can be easily verified by considering the lengths of the sequences 
in the above two equations for Ak§ 1, the latter also with the index k. 1 

Rule 2. (a) If ik + I ~ ik, then flk = { a ( A k - ,  ) } 1 + hk - I  and hk is the 
length of the sequence 

a(Ak) A {a(Ak_ l)}2+hk_, 

(b) mk+l=hk_lWhk+l and A k + l = A k _ l .  

ProoL ik +1#  ik entails a turning back toward the ( k - 1 ) t h  branch. 
Thus, /ik+ I =  Ak-1" The infinite parents of the new daughter branch have 
the forms Ak_ t f l k - t a ( A k _  1) and Akflka(Ak). The shared beginning of the 
infinite parents can be longer than A k = A k_ l f l k - i { a ( A k _  1)}1; k-' only if 
ilk = {a(A,, , ._ 1)}1 +hk_ ,. Thus, 

Ak+l =Akf lk[a(Ak)  ^ {a(Ak- l )}Z~h,_~] I 

In fact, it would suffice to memorize Ak, hk - 1, and in k because Ak and 
A k -  i can be determined from these. If i I = 0, one has the initial conditions 
AI = R L R R ,  ho = 1, and ml = 2  (/i I =R) .  If ij = 1, then A, = R L L ,  ho=0,  
and m, = 2  (.41 = ~ ) .  

4. TYPICAL A N D  EXCEPTIONAL BINARY CODES 

The proofs of Rules 1 and 2 involve only a slight elaboration on the 
MSS rule. The generation of the MSS sequence with these rules is not 
necessarily much more efficient than applying the MSS rule directly. The 
new formulation helps one understand why the length of the MSS sequence 
increases arithmetically with some binary codes and faster with others. 
The increasing length of the MSS sequence in a single binary step is given 
by hk+ 1. We call the growth of the sequence length arithmetic if 
sup{Hi,  H2,...} < H <  oo, where 

1 K 

H K = ~C k~= , h k 

This definition allows arbitrarily large occasional increments in the MSS 
sequence, but they may not be frequent. 

hk must become large for the MSS string length to grow rapidly. Let 
us denote the length of / lk  + 1 by 1(.4 k + l) and assume that mk+ l <  l(,4k+ i) 
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(call it the simple extension condition). Then both A k and "4k [Rule l (a)]  
or Ak and Ak-1 [Rule 2(a)] are long enough so that we can replace the 
antiharmonic extensions with the infinite MSS sequence A in determining 
hk. This suggests that hk can be large only if there is a large block in A 
identical with the beginning of A and which lies after the first 1 + m k 
( i k+l=ik )  o r  l + h k _  l (i,+~ :~ik) symbols of A. On the other hand, the 
beginning of A can be written in the form A --Aj?j {a(,4j)}'~'J... anywhere in 
the sequence (at arbitrary j). Note that a(Ai) can be replaced by A if 
l( ,4j)>mj. Thus mr gives a rough estimate of the length of the above- 
described block, identical with the beginning of A, which comes following 
the first l(.4/)+ 1 symbols. If rnk ( i k+l=ik )  o r  h k - i  ( i k + l ~ i k )  becomes 
equal to I(Aj) for some j for which mj is large, then h, can reach a large 
value. If such an index j is not found, then hk can be expected to remain 
"small." 

The initial values ho and m~ are small, and Rule 2(b) implies that, tak- 
ing steps in alternating directions in the binary tree, one is not likely to 
generate large values of mj. According to Rule l(b), mj grows at least 
linearly with j if consecutive steps are taken in the same direction. In other 
words, assuming that I(1 - i) i p ~ .f!i)J.i{A }'~'J with I ~  .,ij, we obtain m i~> p. 
In this way we see that arbitrarily large values of mJ and, accordingly, of hk 
are possible. However, this is not sufficient to generate geometric growth of 
an MSS sequence. Geometric growth requires average unbounded increases 
of hk as a function ofk. It turns out that judiciously placed blocks of identi- 
cal symbols can bring about such a phenomenon. It is difficult to explain 
the geometric growth of the MSS sequence length for an arbitrary binary 
code. In the following we consider a special form of the binary code whose 
growth properties are easier to understand. 

P r o p o s i t i o n .  Consider binary codes of the form 1010Ptzq0 pl3~... I0 rt'~. 
If p( i )>O and p ( i ) + j ( i ) < i  ( i=2 ,  3 ..... n), where j( i)  is calculated from 
Eqs. (1)-(5) below, then the corresponding MSS sequence has the form 

~-~['-I-1 =oE"lo...=,,E' 2,, 

with ~,, either R or L according to the rule ~,, = ctkt,, ~ [k (n )<  n] beginning 
w i t h e r  l = R a n d ~ o = L a n d  

[ '  ],, = [" ]kl,,i ~jc,,i[" ]jl,,, ~, + Jl,,I[" ] ,  + Jl,,,' "~,,,I,,~[" 3,,,,,, 

Let l(n) be the length of the block [.] , ,  and s(n) the length of the whole 
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MSS sequence. Then k(n), j(n), m(n),/(n), and s (n)  are given by the recur- 
sion formulas 

s ( k ( i )  - 1 ) = l(rn(i - 1 )) (1) 

s ( j ( i )  - 1 ) = l ( k ( i ) )  (2) 

re(i) = j ( i )  + p ( i ) -  1 (3) 

l(i)  = s ( m ( i ) )  (4) 

s( i)  = s ( i -  1) + l(i)  + 1 (5) 

with the initial conditions k (1 )=0 ,  m(1)= -1 ,  / ( - 1 ) = 1 ( 0 ) = 0 ,  l (1)= 1, 
s ( - 2 ) = 0 ,  s ( - 1 ) = l ,  s (0)=2,  and s(1)=4.  The MSS sequence begins 
with R L L [ R ] ~  . . . .  

The proof is a straightforward application of Rules 1 and 2 and is 
omitted here. 

The condition p ( i ) + j ( i ) < i  is equivalent to the simple extension 
condition. 

Equations (1)-(4) can be combined into a recursion rule for m ( n )  

alone: 

re(n)  = p ( n )  + m ( m ( m ( n  - 1)) + 1) (6) 

In addition to the initial condition for m(1) one has to specify the values 
m( - 1 ) = m(0) = - 2  in order to apply (6). The simple extension condition 
in terms of m ( i )  becomes re(i) < i -  1. 

With the aid of the Proposition binary sequences can be constructed 
which lead to geometric growth of the MSS sequence length. Equations 
(4)-(5) give 

s(n) = s(n - 1 ) + s ( m ( n ) )  + 1 (7) 

for the length of the sequence. This implies that the window period 
grows according to the recursion q,, = q,, 1+ q,,~,,~ with each added block 
10 r~''~ in the binary code. The powers p(n) in Eq. (6) can be chosen so 
that m ( n ) = n - r  with r > l  for n > N .  The leading eigenvalue ( of the 
transition matrix M defining the recursion via (q , , ,q , ,_~  ..... q . . . .  +1) = 
M ( q , , _ t , q ,  2 ..... q,, r) is greater than unity and gives the asymptotic 
growth rate of the MSS sequence length. The simple extension condition 
implies ( < 2. 

All Fibonacci sequences correspond to m ( n ) = n - 2  with ~ 1.618. 
Equation (6) implies that the power p ( n )  takes the constant value 4 after 
the "transients" have died out. 
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Example. The MSS sequence for the binary code 10102103104104... 
reads 

R L L [  R ] , R [  R L  ]2 R[  R L L (  R ) ] 3 L[  R L L (  R ) R( R L  ) ] 4 

• L [ ( R )  L L ( R )  R ( R L )  R ( R L L R ) ] 5 . . .  

Each block c<,,[.],, results from a block 10 p ' I  in the binary code. The 
increments resulting from h different from zero are in parentheses (...). 
These increments are precisely the same as the blocks [ - ] i  and re(i)= i - 2  
(i = 1, 2,...). 

Examples of geometric growth with various r and asymptot ic  powers 
p are listed in Table I. All were originally found numerically, but the exam- 
ples with ~ < 2 are beautifully explained by the Proposit ion,  which predicts 
correctly the binary period of families with the recursion q,, = q,,_ ~ + q,,,I,,I, 
al though their binary codes may not begin like 101 . . . .  The recursion 
q, ,=q, , - z  + qn-3 can be put into this form by first replacing q,,-3 by 
q n - -  I - -  q n -  4 and then observing that q,,_ 2 -  q,,- 4 : q , , - -  5"  More com- 
plicated cases can be constructed by letting m(n) oscillate according to 
some rule. For  example,  taking m ( 2 n + l ) = 2 n - 1  and m ( 2 n ) = 2 n - 3  
leads to the recursion relations q2,, + ~ = q2,, + q2,, - ~ and q2,, = q2,, - t + qz,, - 3, 
which can be combined as q2, ,+j=2q2, ,_l+q2, ,_3.  From Eq. (6)  one 
can solve for the powers p ( 2 ) = l ,  p ( 3 ) = p ( 4 ) = 3 ,  p ( 5 ) = 5 ,  p ( 2 n ) = 4  
(n = 3, 4,...), and p(2n + 1 ) = 6 (n = 3, 4,...). Each asymptot ic  binary block 
104106 means multiplying the period with the average factor ( ~  1.554. 
Aperiodic binary codes can be generated making the oscillations in m(n) 
aperiodic. Instead of letting re(n) oscillate regularly as above, we took 
m ( n ) = 2 [ n / 2 ] - 3  or m ( n ) = 2 [ n / 2 ] - I  at random ([-.]  stands for the 
integer part) ,  beginning with an adjustable n. The longer the leading 
regular part,  the faster the MSS sequences grew in length. On account of 

Table I. Repeating Patterns of Periodic Binary Tails 
for Some Recursive Rules Leading to Asymptotic 
Geometric Increase (Given by Factor ~) of the MSS 

Sequence Length 

R u l e  ( P a t t e r n  

q,,  = 2 q n _  t + qn  2 2 . 4 1 4  1 0  t~ 

q,,  -= q ,  - l + 2 q ~  _ z 2 . 0 0 0  1 0 3  

q.,  = q,,  - I + q,,  - .' 1 . 6 1 8  1 0 4  

q ,  = q,,  - t + q,,  - 3 1 . 4 6 6  10 6 

q , = q ~ - I + q , ,  4 1 . 3 8 0  1 0  s 

q,~ = q ,  - 2 + q ,  - 3 1 . 3 2 5  1 0  l~ 
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inherent limitations of computers, no certain conclusion could be drawn 
about the asymptotic algebraic or geometric growth of such sequences. It 
may be interesting to notice that the sum of the second differences of the 
MSS lengths seldom seemed to display a sustained growth, suggesting an 
asymptotic algebraic fate to all MSS sequences arising from random period 
binary codes. 

A purely numerical method of finding geometric growth consists of 
first defining a recursive rule for the increase of the window period and 
then determining the binary code which yields the windows (only a small 
number of rules lead to simple behavior). Each "appropriate" recursion 
rule has a characteristic repeating pattern of the periodic binary tail. For 
example, the rule q, --- q,,_ ~ + q, _ 2 gives the same repeating pattern 10 4 for 
all choices of q~ and q, (if one always moves to the right in the binary 
tree). Taking off from an arbitrary window, however, and successively 
adding the pattern 10 4 to the binary code will almost certainly lead to 
asymptotically arithmetic growth of the MSS sequence length! 

Geometric growth obviously requires a very synchronous binary code. 
A single mismatched binary symbol may suffice to turn the growth into 
arithmetic. Therefore, one expects the MSS sequence length to grow 
arithmetically for most binary codes with periodic tails. We call such codes 
"typical," whereas the codes leading to a faster growth of the MSS 
sequence are called "exceptional." 

The examples of Table I have been constructed by always picking the 
closest matching window on the right-hand side. We could not find any 
exceptional codes with periodic tails by choosing the next window on the 
left-hand side. One may begin, nevertheless, with a binary code that carries 
a number of leading zeros. 

5. N U M E R I C A L  S C A L I N G  RESULTS 

The scaling behavior of the positions and widths of the windows 
appears to be related to the manner of growth of the length of the MSS 
sequence along a path in the binary tree. In the following, the scaling of 
both typical and exceptional binary codes is discussed, concentrating on 
codes with periodic tails. 

5.1. Typical  Codes w i t h  Per iodic Tails 

The binary sequence l ~ corresponds to the stable periods 4, 5, 6 .... 
approaching the final crisis point. The scaling properties of this sequence 
are well understood. I~'t2~ Along the parameter axis the scaling of the 
superstable parameter values is geometric. The scaling factor is determined 
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by the derivative of the map at the unstable fixed point, which is the image 
of the critical point under the second iterate of the map. The widths of the 
windows scale by the square of this factor. Every other binary code with 
the tail 1 ~ corresponds to a window sequence approaching a tangent bifur- 
cation point, i.e., the left end point of some periodic window. It has been 
shown 1~3~ that this results in slower than geometrical scaling. 

On the other hand, every binary sequence with the tail 0 ~ leads to a 
sequence which accumulates at an internal crisis point. All these points are 
fully chaotic according to a theorem by Misiurewicz.lL 4) In the same way 
as for the final crisis point, '  the scaling properties are determined by the 
Lyapunov factors of the associated unstable orbits (Section 6). 

Let us now consider an arbitrary binary code of the form I J  ~ and let 
P k  and zJpk be the superstable parameter value of the window I J  k and its 
width, respectively. We determine the scaling factors 

O~k -- /-tk --/~k- 1 ,' trk = Z~#k- 1 
P k  + I - -  P k  A P k  

for the logistic map and find the period v by which 6k and a k  oscillate as 
k ---, ~ .  The asymptotic limits of the products of v subsequent ,Sk's and ak's 
are denoted by c5 and a, respectively. Table II displays v and c5 for a number 
of examples. Neither v nor 6 is universally determined by the tail of the 
binary code. In Section 6 it is shown that both are related to the orbit of 
the critical point at the accumulation point of the window sequence. The 

Table II. Scal ing Period v and Factor  6 for Some Typical 
Binary Codes with Periodic Tails a 

Code  v z 6 M e Mi 

(01) ~ 1 2 6.996 2 4 
(lO) ~ 1 2 3.716 1 4 

0(01) ~ I 2 5.560 2 6 
1(10) ~ I 2 3.931 1 5 
(001) ~ 1 1 12.11 6 4 

(0101 ~ 2 1 53.96 9 10 
(100) x 1 1 4.962 3 8 
( I10)  x 1 1 7.694 3 4 

(101) ~ 1 1 6.736 3 3 
(011) ~ "2 1 95.30 9 4 

" M,, gives the period of the unstable orbi t  and M, the length of the t ransient  at  the accumula-  
tion point. The repeat ing MSS pat tern  is gone through -r times dur ing  v periods of the binary 

tail. 

822/75/3-4-20 
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accumulation point for this class of codes is always a Misiurewicz point at 
which the critical point is mapped onto an unstable period Mp after Me 
iterations. A proof of this claim is given in the appendix. The numbers Mp 
and Me are included in Table II. It turns out that an MSS sequence corre- 
sponding to the typical binary code has a periodic tail, which is possible 
only if the critical point is mapped onto an unstable orbit. The repeating 
pattern gives the kneading sequence of the unstable orbit. The quantity v 
is greater than unity if the whole pattern is not traversed in one period of 
the binary tail. It may happen that the pattern is run through more than 
once per binary period. In Table II, T gives the number of times the pattern 
is completed in v periods of the binary tail. 

In Section 6 the result of Post and Capel ~12~ that a = 6 2 is generalized 
to all codes within this class. In other words, the scaling behavior in this 
class is equivalent to the one for the code 1 ~ and those with the tail 0 ~-. 

5.2. Except ional  Codes w i t h  Per iodic Tails 

It has been shown in the Fibonacci case that the scaling of the super- 
stable parameter values is superexponential, t14'~51 A geometric increase of 
the MSS sequence length leads to superexponential scaling in all the 
cases we studied. Furthermore, a comparison of the appropriate scaling 
factors t~4"15~ for the logistic map on the one hand and f~,(x)=lasin(rtx) 
on the other suggests that the superexponential scaling is universal for 
quadratic-maximum maps. 

It may be interesting to notice ~2~ that the scaling depends on the order 
of the maximum z. In particular, there seems to be a critical exponent zc 
above which the scaling becomes geometric. This critical exponent appears 
to vary according to the rule determining the manner in which the MSS 
sequence length grows, z,. is known to be 2 for the Fibonacci sequences) 2~ 
We illustrate this in Table III, where we give a number of consecutive 
values of the "second ratio" (/~,,+ t -/a,,)(/a,,_ t - P , , - 2 ) / ( P , , - / a , - i )  2 as n 
increases. At the exponent z =  1.9 it can be seen that the second ratio 
becomes smaller, i.e., the scaling becomes tighter and tighter. At z = 2 the 
second ratios are approximately constant, and at z = 2.1 they grow and will 
eventually reach unity. Then the asymptotic scaling is geometric. The 
numerical result is not as clear with other rules of MSS length growth. As 
an example, take the rule number four in Table I, q,,= q,,_ l +  q,,-3. In 
Table IV we display the second ratios with this rule around what seems to 
be the critical exponent, z = 3. The general pattern is clear, as can be seen 
in tables of second ratios for values of z further away from z = 3 (not dis- 
played here). Nevertheless, it is not obvious, contrary to the case of the 
Fibonacci rule, that one can determine the critical z accurately. It is even 
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Table III. Second Ratios ( P . + I  - P . )  
( P . - 1  - P . - z ) / ( P . -  P . - 1 )  z for  Fibonacci 
Growth  Rule of M S S  Sequence Length 

wi th  Three Dif ferent  Values of z 

z = 1.9 
0.540568649228514548489190112723959 
0.564530204503619057844967713704017 
0.551578916360676664253283350185272 
0.549726619390773431923899110249692 
0.538351819176064005321551433050646 
0.529614409340695420815325244595764 
0.518136481799752541358716136148993 
0.507141398531148030772618302788561 
0.495330000671234148623798701714412 
0.485857115865495547661709604051006 

2=2  
0.576424419734741300857167214977898 
0.614959130438622236460394486199093 
0.613245632645603495309856166834155 
0.623446012948384965895810527136745 
0.623743192210949323918773767120082 
0.627143470611499650661729361375020 
0.627646394677352360059760018283382 
0.628779540148719241232479892371548 
0.629079829446494768497497089288172 
0.629474761421065715816252235390039 

: = 2.1 
0.607806103957966838865150212339956 
0.658870595830241944698609969133370 
0.666284233714677552991319862655434 
0.685565735311454240056896326101484 
0.694426025960070510569799640832677 
0.706458870619379371286744138097185 
0.715214924771737555463117341141810 
0.724415741171660654014734418540930 
0.732511028043468910740220597152332 
0.740481896079685679976317012804011 

m o r e  difficult in o the r  cases tha t  we studied.  Even  if we knew tha t  .:,. has 
to be an integer,  ou r  results  (with q u a d r u p l e  prec is ion)  w o u l d  no t  war ran t  

accu ra t e  c la ims a b o u t  z,. for the rules q, ,  = q , , _ ,  + q ,  _ 4 or  q,, = q, ,  _ 2 + q, ,  - 3 

let a lone  q,, = q , , _  t +  2 q , , _ 2 .  W h a t  one  can say in these cases is that  the 

even tua l  scal ing at  large z will be geome t r i c  (exponent ia l ) .  

The  sugges t ion  a b o u t  the universa l i ty  of  the supe rexponen t i a i  scal ing 

shou ld  be u n d e r s t o o d  as follows. The  F i b o n a c c i  rule is k n o w n  to lead to 
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Table IV. Same as Table III, but  for the 
Rule qn=q._ l  -I-qn_3 

z = 2.8 
0.586845054420196752379632215327061 
0.690937115880963355221722871690154 
0.598511221621835315814787239739078 
0.680678918895344414159165613855318 
0.630796289352418888415607504824941 
0.650678698665798235063631683518628 
0.622338978663477450589882400824111 
0.636204265348214301337957145157083 
0.616070279619805566300882847594128 
0.617131414543638485422774548647918 
z = 2.9 
0.597854898135448817364366762193185 
0.701122017794715060164718629128255 
0.612233100582278084980439102737883 
0.700396659628436265252161220149747 
0.654472472610879111943123908355852 
0.676791426764289821420866637369944 
0.652604193388832420784901064991448 
0.670040424124573012505170071979655 
0.653900542597664328163447728516512 
0.658379863517226631097254053686949 
: = 3  
0.889063230509710949257433103155827 
0.608526128578811708253168260842363 
0.710554728779540332908490734267502 
0.624778128202789123792585376048476 
0.718523854398598587334029966646016 
0.676337976539586658795201438357151 
0.700614931953453023999854784059066 
0.680080751100011810567514638373817 
0.700484168187937249113902119712843 
0.687843759237454627198420807979781 
0.695092414531686557839033507440895 
0.690610650374720809239020313212933 
0.695169218741026093691779912113938 
z = 3.1 
0.618879322690059536219019410471444 
0.719300751880715595824307857228876 
0.636240002730120893516230363300766 
0.735185407285350370458877476608666 
0.696529582120099118658733423994191 
0.722350936087387120085389673522407 
0.704996784254788709822982123279888 
0.727819840994460703811864141746312 
0.718208885237845542575719988558140 
0.727646559370297053146699190784777 
z = 3.2 
0.628933320396211536160445480826680 
0.727419159108398019398137074943382 
0.646706236805181097598526489560081 
0.750499007534655851165800338890541 
0.715178663761871435238940601429359 
0.742191453721296762234597144176702 
0.727579330729961134500138727415663 
0.752333864092286422175342622787652 
0.745319953539087765336190212989834 
0.756443669844986441757849531489885 



Scaling in Unimodal Maps 659 

a universal constant second ratio with all unimodal maps with z = 2. We 
tested the logistic map and the sine map for a number of rules of growth. 
The computed second ratios varied in the same range as those for the 
Fibonacci rule with the two maps or with different beginnings of the 
Fibonacci chain. As the sine map has z-2' 2, the conjecture of universality 
can also only concern z = 2. 

5.3. Codes w i t h  Aper iodic  Tails 

It was demonstrated in Section 4 that exceptional aperiodic codes with 
rapid growth rates of the MSS sequence length can be explicitly construc- 
ted. For a random code with no built-in blocks of identical symbols, 
however, it is natural to expect arithmetic average growth. The numerical 
studies bear out this expectation. We observe average geometric scalings of 
the superstable parameter values and positive Lyapunov exponents at the 
accumulation points. 

6. G E O M E T R I C  SCALING 

We are interested in families of MSS sequences belonging to typical 
binary codes with periodic tails. These sequences have some initial length 
M,. They grow in steps of n = rMp per advancing v periodic blocks of the 
binary tail. In order to get at the scaling parameters 6 and tr defined in the 
preceding section, we take advantage of the local description of Post and 
Capel. 1121 It describes the map f , , (x)  within the window of period 1. We 
choose a particular representation of the logistic map f , , ( x ) = ~ - I x l  = 
where z may take the values 1 < z < ~  (i.e., in this section we do not 
restrict ourselves to the case of a quadratic maximum). Then the local 
description is centered at x = 0, and the following reduced form applies: 

x . , +  ,~ = p~(t~) + 21 Ix. l:  + 'q Ix . [  2~ + - ' -  (8 )  

where xai=o~ is some starting point close to the central value x=O,  so 
close that we do not have to worry about the term to the power 2z on the 
right-hand side. The local description then incorporates one parameter 2z. 
Finally 

p , ( ~ )  = ~ - I ~ - I ~  . . . .  M " - . - I = 1  " (9) 

with l -  1 pairs of vertical bars. For the present purposes the index l will 
need to take values like m + kn and m + (k + 1 )n, where k is a large integer, 
since we are interested in the asymptotic ~ scaling and the ratios of widths 
of consecutive windows in our families. 



660 Ketoja and Kurkij~irvi 

With the substitutions, leaving out temporarily the subscripts of 2 
and p, 

x , =  ui 121- , /c:- ,I  sgn 2 

p = - r  IAI- m"-  1) sgn 2 
(10) 

the above form turns into Post 's and Capel's normalized submap 

Ui+ 1 = luil=--r (11) 

First consider the ratios of window widths. If p varies by Ap when 
varies across the period-/ window, the window width expressed in # is 
obviously 

where a tilde on the symbol # indicates the superstable parameter  value. By 
the scaling, Eq. (I0), between p and r we can express Ap in terms of Ar, the 
invariable normalized window width of Eq. (11). The "physical" window 
width w / is then 

zlr 

121':~=- ') (dp/d~ I .=~)  

We now give the index l the values N +  n and N, where N =  m + kn. For  
ratios of window widths, dr cancels, and the scaling in the family becomes 
asymptotically 

i~ k I4'...~N __ (~'N + n')I/(z--l)dpfd[d lit= fiN+n 
(12) 

when N =  m + nk becomes large, i.e., k becomes large (6k is essentially the 
product  of v subsequent ak'S defined in Section 5). 

For  the scaling of the positions of the windows we turn to the function 
P,, +k,,. It determines the height of the maximum or minimum of the local 
mapping : "  + k . . . .  j ,  t x j  and it gives the value of x to which the center point 
x = 0 is sent in f~:'+ k"(x). At la =/~m + ,k, P,-+ ,,k = P(P) takes the value zero. 
Let us look at the functions Pm +,k for different k at the accumulat ion point 
p~  of the family. Denote again N =  m + nk. From the definition of p above, 
Eq. (9), 

p N ( / I )  = N f , ,(O) 
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and 

PN+,,(M) = f;:(PN) 

But the orbit of the center x = 0 repeats itself with the period n. It follows 
that 

pN +,,(IJoo) ~ RN(IJ~) 

which means that the P,,,+k,, for different k all meet at the same point at 
/ ~ .  Assuming that the p(p) are locally straight lines, we get the asymptotic 
tt scaling from the derivatives of the p for different k. Estimate PN and 
PN+,, as follows: 

dpN I(=~N 
p~(a~o) ~- - da ( ~ - ~ ' )  

and 

p~+, , (~) -  d p ~ + , ,  (#~+, , -~ )  
dtl ll:~lN+n 

These two quantities being equal, 

#N--liD dpN+,,/dM I,,=~=+. 
# ~ + , , - ~  dpN/d~ I~ =,~ 

and 

~k-- - ~N--~N+n ~N--]"loo 

= \  d~ ,,=r,~.~ d~ .=~,,J 
(13) 

again for large N. We have not seen this result in the literature. 
What  remains is calculating the scaling factors 2 and the ratio of 

(dpN+,,/dlz) at /~=fiN+,, and dpN/dp at /z=fiN. We follow Post and 
Capel. I ~ 2 

Take 2 first. "In the following, a tilde on the variable x refers to an 
iterate of the central value x = 0. At superstability, since p vanishes there, 
we have from the local description of Eq. (8) 

xm+ I I = )" Ixtil" (14) 
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where some starting point x .  close to the central value x = 0  has been 
picked. We will express the left-hand side of this equat ion as an expansion 
in terms of the following quantity: 

v = fl-,,(Xu) -- f~,(Xo) 

with the same point x , .  In a single shot of the mapping  f~,, the central 
point and a point in its vicinity will be sent far away from the center but 
roughly to the same location. Therefore the quanti ty v is small. To  linear 
order in v, then, 

/ - 1  .( / - 1  
Xl( i+i )= f ~, ( f i b ( "  u))= f ~,, (f~,(f'o)+V) 

/ - 1  
/ - 1  ~ ( / - - 1  ~ ~ =f~.,  (f l~,(Xo))+f) ,  r(f~,(Xo))V= YI f r , (x j )  v (15) 

j =  1 

where a prime denotes a derivative with respect to the argument  of the 
function at the indicated value of the argument.  For  the specific form 
f (x)  = t, - t x l :  

v = - i x . I  = 

and Eq. (15) yields 
I - - I  

xl .+ 1) = - I-I f~l(X~ -) Ix.I = 
j = l  

and one reads from Eq. (14) 
/ - i  

2 =  - [ I  f~l(2i) (16) 
.i= I 

With 2t cleared, one still needs to calculate the derivative of p with 
respect to /x  in Eqs. (12) and (13). Look again at the reduced map  f l , ( x ) ,  

x / =  p + A Ixol :  

and its derivative with respect to B, 

dx_! = dp + ~ ~ IXol- 
dl~ d# dl2 

Choose x o as 2 0 = 0 and take the expression at the superstable point. The 
second term on the right vanishes and 

d ~  / 
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One thus needs an expression for (d-~l/dtOr,,. Consider the map 

xi+ l = f . ( x i )  = ~ - Ix/I = 

In general x~+, depends on Xo in addition t,o II. which is indicated by the 
partial derivatives in the sequel 

~x~ Ox, 
c~x~+, = 0 / 1  1 - z  Ix , l : - '  s g n x ~ - ~ - ~ = l + f i , ( x , ) - - ~  

= l + f ~ , ( x i ) [ l + f ' , , ( x i _ , ) [ l + f ~ , ( x ,  2)[1+ ..-313 

(17) 

Nothing prevents us from choosing i + 1 = l and picking the superstable Pt 
along with Xo =.7o = 0. Then the iterates depend only on p and 

d:Tq ~,= 1 +/~-,(.~,_,)[1 +f~ , (~ t_2) [ l  + .. [1 +f~,(.~,)] - ] ]  
du 

/ - - 1  I - |  

= 1 +  E Hf~,(:TJ) 
i=l  j = i  

or finally 

fit I--1 I--1 dp = 1 + Z I-I f;;,(.~/) 
�9 

i=l  j = i  

Now return to Eq. (12). From Eq. (16) we get immediately at the limit 
when N ---, oo 

K+n 

• N + n / • N =  H f ~  . . . .  (~ i )  
i=K 

where K is some number larger than M,, the number of initial iterations 
before hitting the unstable period, and smaller than N -  Mr ,  M r being the 
number of the last steps drifting away from the unstable period to end at 
the center. It is important to notice for what follows that K may vary over 
the whole middle range of the N + n cycle. It turns out to be convenient to 
call the individual derivatives in the product Li and write L for the product 
from i = K to i = K +  n. The contribution to 6k of the first factor in Eq. (12) 
is then 

, t/I - = L1/~'- -1~ (18) 
\ 2 u J  
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The second quantity in Eq. (12), 

( -~  ,,=~N+,)/(~--~P ,,=~^,) (19) 

has a structure which is easiest grasped looking at one derivative at a time. 
In the following the products are written in the order of increasing length, 
more or less as in Eq. (17). We need clarifying notation: 

l + L,v_ t + L,v_ l L,v_ 2 + L,v i L,v 2L,v_ s + " " + e =  E 

where e=LN_tLN_~LN_3"--LN_MI. Then 

dP ,, = c,,,, 
= I + L N - I + L ' v  I L N _ z + L N _ I L N _ 2 L , v _ 3 + " "  

+ L ,v_ILN 2 " " L l  

= E + e ( L N - , W l - t  + L N - M I - t  L,,- Mt-z + "'" 

+ L , v _ M , _ I L N _ M r _ , , " ' L N _ M I _ , , + I + L )  

+ e L ( L , v - , ~  I ,, t + L , v - M r - , ,  ILN-Mr- , ,  2+ "'" 

+ LN-M, , , - ,L , v -MI- , ,  2'''LN-M, 2 n + l + L ) +  ... (20) 

Now the expressions in the parentheses in Eq. (20) are identical since they 
run over full unstable periods of length n. We again introduce a new sym- 
bol B, this time for the sum in the parentheses multiplied by e. Then 

dp = E + B + B L + B L L +  . . .  + B L  ~'v Mt-M'I/"-'I-P (21) 
- ~  p = ~ ,,,, 

where 

P=eLIN-MI-M'~/n(LM,- I+LM,-ILM,-2 + " ' "  +LM, I " " L l )  

The quantity M r may be thought of as having been chosen such that 
( N - M j - M i ) / n  is an integer. P represents the ingoing steps before hitting 
the unstable period. 

Introduce yet another symbol S = S ( N )  for the right-hand side of 
Eq. (21) without the term E. Remember that the ratio we are seeking to 
calculate, Eq.(19), is between two expressions of type (21) with the 
numerator having N + n  in the place of the denominator's N. If the 
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denominator is expressed as in Eq. (21), the numerator cycle is longer by 
n and the right-hand side of Eq. (21) will have one more term, 

B L C N + , ,  Mj- M,I/,, 

and the factor P becomes multiplied with L. This can be interpreted as 
multiplying by L the terms which were given the name S above and adding 
back a B. It follows that 

S is obviously a rapidly growing function of N provided that L is larger 
than unity, i.e., that the periodic orbit at the accumulation point of the 
family is unstable. All other quantities in Eq. (22) remain constant when N 
grows. The asymptotic result at the limit N ~ ~ is simply 

By Eq. (13) this result is directly the parameter scaling factor 6, 

~5=L 

Together with Eq. (18) we get for the scaling of the window width, 
Eq. (12), 

t r  = L z / l :  - ~ } L  = L : / c :  - ~ 

7. D I S C U S S I O N  

It was shown in Section 6 that typical binary codes with periodic tails 
lead to geometric scaling whatever the order - of the critical point. The 
situation is very different in the case of the exceptional codes. Our numeri- 
cal results suggest (see Section 5) that the scaling for an exceptional code 
with a periodic tail is always superexponential and probably universal with 
a quadratic maximum. If we let the order of the maximum increase, 
however, the scaling becomes geometric. For the Fibonacci sequences this 
has been pointed out by LyubichJ 2~ The critical value of the exponent - 
for the Fibonacci �9 sequences is 2. In other cases it is numerically much 
harder to pinpoint the exact critical value of the universality class at which 
the transition from superexponential to geometric scaling takes place. This 
would be an interesting problem for future studies. 

A completely different binary ordering of periodic windows has 



666 Ketoja and Kurkij~irvi 

recently been considered by Zaks. ~2~1 Each infinite sequence of periodic 
windows is described by a "winding number." He observes a double- 
exponential scaling for the sequence with inverse golden mean winding 
number. Furthermore, qualitative properties of the scaling are not affected 
by changing the order of the critical point. In our binary tree, these 
windows correspond to the binary codes 0, 01-', 012013, 01201315, 
01201315018 01201315018113 ..... which are exponentially growing truncations 
of the infinite aperiodic code 012013018012~ .. . .  Along this binary path the 
MSS length grows arithmetically resulting in an average geometric scaling 
of the periodic windows. Therefore, it is not surprising that the scaling is 
superexponential for the above subsequence. 

A binary tree of stable periodic attractors appears also in invertible 
circle maps. c-'21 It is therefore interesting to compare the scaling behaviors 
in these two cases. In a circle map the period of the attractor increases 
geometrically for almost all routes in the binary Farey tree. In the standard 
case this leads to universal geometric scaling. In the unimodal map a 
geometric increase of the period and the resulting universal scaling is 
observed only in some exceptional cases. It is an open question whether 
one could construct a "nonrenormalizable" circle map with superexponen- 
tial scaling. It is not clear how the various scaling properties relate to the 
Lebesgue measure of the parameter values for aperiodic attractors. For a 
standard critical cubic circle map this measure is zero, whereas for the 
quadratic unimodal map the measure of aperiodic attrators is positive. 

The typical binary codes with periodic tails give a huge number of new 
Misiurewicz points in a unimodal map (recall that the same structure is 
repeated within each window). These points form a subset of the set of all 
Misiurewicz points of the Mandelbrot setJ 23~ It would be an interesting 
problem in the theory of numbers to work out whether the typical binary 
codes with periodic tails (taking into account the self-similarity) give all the 
Misiurewicz points of a unimodal map. Any additional ones would have to 
correspond to asymptotically periodic MSS sequences generated by either 
exceptional binary codes or typical codes with aperiodic tails. 

APPENDIX.  A TYPICAL BINARY CODE W I T H  A 
PERIODIC TAIL LEADS TO A 
M I S I U R E W I C Z  POINT 

Let us assume that the binary code has a periodic tail which is neither 
0 ~ nor 1 ~. The code can always be written in the form IJJJ . . . .  where I 
and J=j~...j~r are finite binary codes with jzv~j~. Let A be the corre- 
sponding infinite MSS sequence. 
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L e m m a .  Consider a binary code of  the above  form with hk < H < c~ 
for every k. Then the accumulat ion point of  the corresponding sequence of  
periodic windows  is a Misiurewicz point. 

ProoL Because j 2 = j l ,  Rule 2(b) implies that mN+2+qK<2H for 
q = 0 ,  1, 2 ..... where N is the length of  L Furthermore,  by Rules l (b)  and 
2 ( b ) ,  mk+t<~m k + n. Combining  these two results gives an upper bound 
for m k : m ~ < ( K + l ) H  for k = N + 2 ,  N + 3  ..... There exists a p>_.N+2 
such that l(,,ip) ~> ( K +  l ) h  t. Because ink+ ~ < l(/ik + ~) for k = p -- 1, p ..... it is 
not necessary to carry out  the ant iharmonic  extensions when determining 
hk (k>_.p- 1) in Rule l (a )  or 2(a). In particular, A can be written as the 
compos i t ion  Ap_~flp_){A}t~ . - '  f l p ' { , 4 } l ~  p . . . .  The set of  possible values for 
mk and hk is finite when k > N + 1. Therefore, there exist finite P > p and 
Q so that (mp, he,  h e _ l ) = ( m p + Q K ,  hp+QK, h e + o r _ l ) .  Because ie+k= 
ie+QK+k for k = 0 ,  1, 2 ..... Rules 1 and 2 imply that 

(DIp+ k, hp+l<, hp+k_ I) = (Illp+QK+k, hp+oK+k, hp+QK+, 1) 

which is possible only if A has a periodic tail. By Corollary II.8.4 of  ref. 1, 
A is an MSS sequence for a Misiurewicz point. II 
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